Extensions 1→N→G→Q→1 with N=C32 and Q=S3×C9

Direct product G=N×Q with N=C32 and Q=S3×C9
dρLabelID
S3×C32×C9162S3xC3^2xC9486,221

Semidirect products G=N:Q with N=C32 and Q=S3×C9
extensionφ:Q→Aut NdρLabelID
C321(S3×C9) = C9×C32⋊C6φ: S3×C9/C9S3 ⊆ Aut C32546C3^2:1(S3xC9)486,98
C322(S3×C9) = C9×He3⋊C2φ: S3×C9/C9S3 ⊆ Aut C3281C3^2:2(S3xC9)486,143
C323(S3×C9) = C33⋊C18φ: S3×C9/C32C6 ⊆ Aut C3254C3^2:3(S3xC9)486,136
C324(S3×C9) = S3×C32⋊C9φ: S3×C9/C3×S3C3 ⊆ Aut C3254C3^2:4(S3xC9)486,95
C325(S3×C9) = C3⋊S3×C3×C9φ: S3×C9/C3×C9C2 ⊆ Aut C3254C3^2:5(S3xC9)486,228
C326(S3×C9) = C9×C33⋊C2φ: S3×C9/C3×C9C2 ⊆ Aut C32162C3^2:6(S3xC9)486,241

Non-split extensions G=N.Q with N=C32 and Q=S3×C9
extensionφ:Q→Aut NdρLabelID
C32.1(S3×C9) = He3⋊C18φ: S3×C9/C9S3 ⊆ Aut C3281C3^2.1(S3xC9)486,24
C32.2(S3×C9) = He3.C18φ: S3×C9/C9S3 ⊆ Aut C32813C3^2.2(S3xC9)486,26
C32.3(S3×C9) = He3.2C18φ: S3×C9/C9S3 ⊆ Aut C32813C3^2.3(S3xC9)486,28
C32.4(S3×C9) = C9×C9⋊C6φ: S3×C9/C9S3 ⊆ Aut C32546C3^2.4(S3xC9)486,100
C32.5(S3×C9) = He3.5C18φ: S3×C9/C9S3 ⊆ Aut C32813C3^2.5(S3xC9)486,164
C32.6(S3×C9) = C331C18φ: S3×C9/C32C6 ⊆ Aut C32186C3^2.6(S3xC9)486,18
C32.7(S3×C9) = (C3×C9)⋊C18φ: S3×C9/C32C6 ⊆ Aut C32546C3^2.7(S3xC9)486,20
C32.8(S3×C9) = C9⋊S33C9φ: S3×C9/C32C6 ⊆ Aut C32546C3^2.8(S3xC9)486,22
C32.9(S3×C9) = C923S3φ: S3×C9/C32C6 ⊆ Aut C32546C3^2.9(S3xC9)486,139
C32.10(S3×C9) = S3×C27⋊C3φ: S3×C9/C3×S3C3 ⊆ Aut C32546C3^2.10(S3xC9)486,114
C32.11(S3×C9) = C9⋊S3⋊C9φ: S3×C9/C3×C9C2 ⊆ Aut C3254C3^2.11(S3xC9)486,3
C32.12(S3×C9) = D9×C27φ: S3×C9/C3×C9C2 ⊆ Aut C32542C3^2.12(S3xC9)486,14
C32.13(S3×C9) = C32⋊C54φ: S3×C9/C3×C9C2 ⊆ Aut C32546C3^2.13(S3xC9)486,16
C32.14(S3×C9) = C9⋊C54φ: S3×C9/C3×C9C2 ⊆ Aut C32546C3^2.14(S3xC9)486,30
C32.15(S3×C9) = D9×C3×C9φ: S3×C9/C3×C9C2 ⊆ Aut C3254C3^2.15(S3xC9)486,91
C32.16(S3×C9) = C3×C32⋊C18φ: S3×C9/C3×C9C2 ⊆ Aut C3254C3^2.16(S3xC9)486,93
C32.17(S3×C9) = C3×C9⋊C18φ: S3×C9/C3×C9C2 ⊆ Aut C3254C3^2.17(S3xC9)486,96
C32.18(S3×C9) = C9×C9⋊S3φ: S3×C9/C3×C9C2 ⊆ Aut C3254C3^2.18(S3xC9)486,133
C32.19(S3×C9) = C9⋊(S3×C9)φ: S3×C9/C3×C9C2 ⊆ Aut C3254C3^2.19(S3xC9)486,138
C32.20(S3×C9) = C3⋊S3×C27φ: S3×C9/C3×C9C2 ⊆ Aut C32162C3^2.20(S3xC9)486,161
C32.21(S3×C9) = S3×C3×C27central extension (φ=1)162C3^2.21(S3xC9)486,112

׿
×
𝔽